李志攀:山东曹县人,博士,研究员。2005年获兰州大学理学学士学位,2010年获北京大学粒子物理与原子核物理专业理学博士学位,随后就职西南大学工作至今,先后任特聘教授、研究员。曾先后访问美国橡树岭国家实验室、德国慕尼黑工业大学、法国IPN-Orsay 研究所、克罗地亚萨格勒布大学等。
目前主要从事相对论量子多体理论、奇特原子核谱学与新奇物理现象、原子核裂变等方面的研究工作,已在物理学主流期刊Physical Review系列、Physics Letters B等合作发表论文100余篇。先后主持国家自然科学基金、科技部政府间科技合作项目等10余个基础科研项目。2018年入选重庆市高层次人才特殊支持计划青年拔尖人才,2020年入选国家级青年人才。主要承担《力学》、《理论力学》、《大学物理》(双语)、《密度泛函理论与程序设计》等课程的教学任务。
Email :zpliphy@swu.edu.cn
l 主要研究方向:
Ø 相对论密度泛函理论发展及应用;
Ø 奇特原子核谱学与新奇物理现象;
Ø 原子核裂变;
l 主持的科研项目或人才项目:
Ø 2020年入选国家级青年人才
Ø 2018年入选重庆市高层次人才特殊支持计划第四批青年拔尖人才
Ø 中央高校基本科研业务费-国家级人才科研资助项目:原子核自发裂变与诱发裂变的微观理论研究;2021.3-至今
Ø 国家自然科学基金-面上项目(12375126):核裂变碎片角动量产生与演化的微观理论研究;2024.1-2027.12
Ø 霍英东教育基金会第十七届高等院校青年教师基金:原子核裂变的微观理论研究;2020.2-2023.2
Ø 国家自然科学基金-面上项目(11875225):原子核裂变动力学的协变密度泛函理论研究; 2019.1-2022.12
Ø 国家自然科学基金-面上项目(11475140):原子核低激发谱与量子相变的协变密度泛函研究; 2015.1-2018.12
Ø 国家自然科学基金-青年项目(11105110):基于协变密度泛函理论微观研究原子核量子相变; 2012.1-2014.12
Ø 科技部中国-克罗地亚政府间科技合作项目:原子核裂变动力学的微观能量密度泛函研究;2015.7-2017.6
Ø 科技部中国-克罗地亚政府间科技合作项目:奇特原子核结构及相关热点物理的研究;2014.1-2015.12
Ø 重庆市自然科学基金项目(cstc2011jjA0376):丰质子原子核中新型不对称裂变的研究;2012.1-2014.12
Ø 中央高校基本科研业务费专项资金(XDJK2011B002):奇A原子核量子相变与临界点对称性的微观研究;2011.5- 2014.5
Ø 西南大学博士基金(SWU110039):极化质子-奇特原子核反应的微观研究;2010.10-2013.10
l 发表的学术论文详见:https://www.webofscience.com/wos/author/record/F-6299-2012
代表性论文:
1. Z. Y. Li, S. Y. Chen, M. H. Zhou, Y. J. Chen, and Z. P. Li*, Covariant density functional theory for nuclear fission based on a two-center harmonic oscillator basis, Phys. Rev. C 109, 064310(2024).
2. J. Xiang, Z. P. Li*, T. Nikšić, D. Vretenar, W. H. Long, and X. Y. Wu. Coupling of shape and pairing vibrations in a collective Hamiltonian based on nuclear energy density functionals. II. Low-energy excitation spectra of triaxial nuclei. Phys. Rev. C, 109, 044319(2024).
3. Y. Kuang, X. L. Tu, J. T. Zhang, K. Y. Zhang, and Z. P. Li*, Systematic study of elastic proton-nucleus scattering using relativistic impulse approximation based on covariant density functional theory, European Physical Journal A, 2023, 59(7).
4. M. H. Zhou, Z. Y. Li, S. Y. Chen, Y. J. Chen, and Z. P. Li*, Three-dimensional potential energy surface for fission of 236U within covariant density functional theory, Chinese Physics C, 2023, 47(6).
5. Y. L. Yang, P. W. Zhao, and Z. P. Li*, Shape and multiple shape coexistence of nuclei within covariant density functional theory, Phys. Rev. C 107, 024308
6. Z. Y. Li, S. Y. Chen, Y. J. Chen, and Z. P. Li*, Microscopic study on asymmetric fission dynamics of 180Hg within covariant density functional theory, Phys. Rev. C 106, 024307.
7. Y. L. Yang, Y. K. Wang, P. W. Zhao, and Z. P. Li*, Nuclear landscape in a mapped collective Hamiltonian from covariant density functional theory, Phys. Rev. C 104, 054312.
8. L. J. Wang, L. Tan, Z. P. Li, G. Wendell Misch, and Y. Sun, Urca Cooling in Neutron Star Crusts and Oceans: Effects of Nuclear Excitations, Phys. Rev. Lett. 127, 172702.
9. X. Q. Yang, L. J. Wang, J. Xiang, X. Y. Wu, and Z. P. Li*, Microscopic analysis of prolate-oblate shape phase transition and shape coexistence in the Er-Pt region, Phys. Rev. C 103, 054321.
10.J. Xiang, Z. P. Li*, T. Nikšić, D. Vretenar, and W. H. Long, Coupling of shape and pairing vibrations in a collective Hamiltonian based on nuclear energy density functionals, Physical Review C 101, 064301 (2020).
11.W. Sun, S. Quan, Z. P. Li*, J. Zhao, T. Nikšić, and D. Vretenar, Microscopic core-quasiparticle coupling model for spectroscopy of odd-mass nuclei with octupole correlations, Physical Review C 100, 044319 (2019).
12.S. Quan, Z. P. Li*, D. Vretenar, and J. Meng, Nuclear quantum shape-phase transitions in odd-mass systems, Physical Review C (Rapid Communications) 97, 031301 (2018).
13.J. Xiang, Z. P. Li*, W. H. Long, T. Nikšić, and D. Vretenar, Shape evolution and coexistence in neutron-deficient Nd and Sm nuclei, Physical Review C 98, 054308 (2018).
14.S. Quan, W. P. Liu, Z. P. Li*, and M. S. Smith, Microscopic core quasiparticle coupling model for spectroscopy of odd-mass nuclei, Physical Review C 96, 054309 (2017).
15.S. Quan, Q. Chen, Z. P. Li*, T. Nikšić, and D. Vretenar, Global analysis of quadrupole shape invariants based on covariant energy density functionals, Physical Review C 95, 054321 (2017).
16.H. Tao, J. Zhao, Z. P. Li*, T. Nikšić, and D. Vretenar, Microscopic study of induced fission dynamics of Th-226 with covariant energy density functionals, Physical Review C 96, 024319 (2017).
17.S. Y. Xia, H. Tao, Y. Lu, Z. P. Li*, T. Nikšić, and D. Vretenar, Spectroscopy of reflection-asymmetric nuclei with relativistic energy density functionals, Physical Review C 96, 054303 (2017).
18.K. Q. Lu, Z. X. Li, Z. P. Li*, J. M. Yao, and J. Meng, Global study of beyond-mean-field correlation energies in covariant energy density functional theory using a collective Hamiltonian method, Physical Review C 91, 027304 (2015).
19.Z. P. Li, B. Y. Song, J. M. Yao, D. Vretenar, and J. Meng, Simultaneous quadrupole and octupole shape phase transitions in Thorium, Physics Letters B 726, 866 (2013).
20.Z. P. Li, C. Y. Li, J. Xiang, J. M. Yao, and J. Meng, Enhanced collectivity in neutron-deficient Sn isotopes in energy functional based collective Hamiltonian, Physics Letters B 717, 470 (2012).
21.Z. P. Li, T. Nikšić, P. Ring, D. Vretenar, J. M. Yao, and J. Meng, Efficient method for computing the Thouless-Valatin inertia parameters, Physical Review C 86, 034334 (2012).
22.Z. P. Li, J. M. Yao, T. Nikšić, D. Vretenar, H. Chen, and J. Meng, Energy density functional analysis of shape evolution in N=28 isotones, Physical Review C 84, 054304 (2011).
23.Z. P. Li, T. Nikšić, D. Vretenar, and J. Meng, Microscopic Description of Spherical to γ-soft Shape Transitions in Ba and Xe Nuclei, Physical Review C 81, 034316 (2010).
24.P. W. Zhao, Z. P. Li, J. M. Yao, and J. Meng, New parametrization for the nuclear covariant energy density functional with a point-coupling interaction, Physical Review C 82, 054319 (2010). Citations: 677 (Google Scholar)
25.Z. P. Li, T. Nikšić, D. Vretenar, P. Ring, and J. Meng, Relativistic energy density functionals: Low-energy collective states of 240Pu and 166Er, Physical Review C 81, 064321 (2010).
26.Z. P. Li, T. Nikšić, D. Vretenar, J. Meng, G. A. Lalazissis, and P. Ring, Microscopic analysis of nuclear quantum phase transitions in the N≈90 region, Physical Review C 79, 054301 (2009).
27.Z. P. Li, T. Nikšić, D. Vretenar, and J. Meng, Microscopic Analysis of Order Parameters in Nuclear Quantum Phase Transitions, Physical Review C 80, 061301(R) (2009).
28.T. Nikšić, Z. P. Li#, D. Vretenar, L. Prochniak, J. Meng, and P. Ring, Beyond the relativistic mean-field approximation. III. Collective Hamiltonian in five dimensions, Physical Review C 79, 034303 (2009).
29.Z. P. Li, G. C. Hillhouse, and J. Meng, Validity of the relativistic impulse approximation for elastic proton-nucleus scattering at energies lower than 200 MeV, Physical Review C 78, 014603 (2008).
30.Z. P. Li, G. C. Hillhouse, and J. Meng, Energy-dependent Lorentz covariant parameterization of the NN interaction between 50 and 200 MeV, Physical Review C 77, 014001 (2008).
l 参编论著:
1. Z. P. Li, D. Vretenar (2022). Model for Collective Motion. In: Tanihata, I., Toki, H., Kajino, T. (eds) Handbook of Nuclear Physics. Springer, Singapore.
2. Z. P. Li, T. Niksic, D. Vretenar, J. M. Yao (2016). Chapter 12: Beyond the relativistic mean-field approximation — collective correlations. In: J. Meng (eds) Relativistic Density Functional for Nuclear Structure. World Scientific Publishing.
l 培养学生及去向(部分)
Ø 研究生孙玮至美国圣母大学攻读博士学位
Ø 研究生王方元、李泽宇、卓思羽至中国原子能科学研究院攻读博士学位
Ø 研究生彭永至兰州大学攻读博士学位
Ø 研究生杨小芹、陈盛远、周明晖于西南大学攻读博士学位
Ø 本科生张嫣至清华大学直接攻读博士学位
Ø 本科生刘白伊郦、蒋若冰至北京大学直接攻读博士学位
Ø 本科生周淑明至中国科学院高能物理研究所攻读硕士学位
Ø 本科生闫晶晶至北京航天航空大学攻读硕士学位
l 联系方式:
地址:重庆市北碚区天生路2号新葡的京集团3512vip
Email :zpliphy@swu.edu.cn
欢迎有志于科研工作、并对核物理与核天体物理感兴趣的研究生及本科生加入我们课题组!